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Kurzfassung

In dieser Arbeit haben mein Kollege Ahmed El Agrod und ich eine Software implementiert,
die es grundsätzlich ermöglicht Punktwolken zu bearbeiten. Durch Verschieben, Löschen, Spei-
chern und Einfügen von ausgewählten Objekten soll die Punktwolke modifiziert werden können.
Diese Bachelorarbeit beschreibt hauptsächlich, wie neu hinzugefügte Objekte automatisch auf
dem Boden platziert werden indem dieser von einem Algorithmus erkannt wird. Weiters wird be-
schrieben wie ein Image Inpainting Algorithmus implementiert wurde, um unvollständige flache
Regionen von Punktwolken mit neuen Punkten und zugehörigen passenden Farben zu füllen. Die
Bodenerkennung wurde mithilfe des RANSAC-Algorithmus implementiert, welcher eine Ebene
berechnet, die den Boden für die Szene repräsentiert. Für den Image Inpainting Algorithmus
mussten wir die 3 dimensionalen Punkte der Punktwolke auf ein 2D-Bild abbilden, dann einen
Image Inpainting Algorithmus verwenden, um die fehlenden Pixel zu füllen, und schließlich die
2D Pixel des inpainted Bildes wieder auf 3D-Punkte in unserer Szene abbilden. Außerdem wur-
de eine Evaluierung durchgeführt, bei der sowohl die automatische Bodenerkennung als auch
der Image Inpainting Algorithmus hinsichtlich Laufzeit und visueller Qualität getestet wurden.
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Abstract

In this thesis, my colleague Ahmed El Agrod and I implemented software that allows point
clouds to be edited. By moving, deleting, saving, and inserting selected objects, the point cloud
should be able to be modified. This bachelor thesis mainly describes how newly added objects
are automatically placed on the ground being recognized by an algorithm. Furthermore, it is
described how an image inpainting algorithm was implemented to fill incomplete flat regions
of point clouds with new points and associated matching colors. The ground detection was
performed using the RANSAC algorithm, which computes a plane representing the ground for
the scene. For the image inpainting algorithm, three-dimensional point cloud points had to be
mapped to a 2D image, then use an image inpainting algorithm to fill in the missing pixels, and
finally, map the 2D pixels of the inpainted image back to 3D points in the scene. An evalua-
tion was also conducted to test both the automatic ground detection and the image inpainting
algorithm regarding runtime and visual quality.
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CHAPTER 1
Introduction

The number of 3D scanners for creating point clouds is increasing daily, and making a point
cloud with your smartphone is already possible. Scanning and digitizing your environment is a
big step in computer graphics. For example, people can scan their living room and create 3D
objects without modeling. Since self-driving vehicles are also evolving and most of these ve-
hicles use LIDAR sensors or depth cameras that can be used to generate point clouds, we can
talk about a trend of point clouds becoming more common in the future. The ability to reshape
point clouds immersively, for example, by quickly selecting specific objects to move or delete,
can open up new ideas and possibilities.

Our goal is to be able to redesign point cloud data immersively. Therefore, we created soft-
ware where users can add multiple point clouds into the same scene. After the 3D model is
displayed in the point cloud viewer scene, the user should be able to select specific subsets,
which we will further refer to as „objects“. Deep learning methods should classify the point
cloud into separate objects, e.g., trees, cars, passengers, etc. Then, the user should be able to se-
lect these objects simply by clicking on them. Alternatively, the user should be able to manually
select objects using a box that can be moved, scaled, and rotated. Once an object is selected, it
should be possible to delete, move, save and insert it again into the same scene or even a new
one. When adding new objects, the program should automatically place them on the ground.

After deleting several objects from the scene, the ground may also be deleted. In addition,
the point cloud is often initially full of holes and missing areas due to acquisition sensors poorly
scanning the objects. Therefore, an image inpainting algorithm is implemented to smoothly fill
these holes in flat areas such as sidewalks or street floors. A graphical user interface (GUI) is
implemented to conveniently use all tools and features and make the software more user-friendly.

The project was carried out by my colleague Ahmed El Agrod and I. Ahmed was responsible
for the machine learning that classifies objects of the point cloud and selects them to save, move
or delete. I was responsible for implementing the image inpainting algorithm and automatically
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detecting ground surfaces to place objects correctly on the ground. Nonetheless, we worked
together, as some implementations were highly correlated, and basic implementations such as
rendering the scene and implementing the graphical user interface were conducted together.

The ability to reshape point cloud scenes immersively can be a major step forward in being
more comfortable with working and experimenting with point clouds. For example, cars, bikes,
or other machines could be equipped with LIDAR sensors and record objects, specific areas, or
an entire city. This would allow for the creation of a database of a wide variety of recorded data
which can be used as assets for planning a room, house, or even a city.

The following chapter outlines related work. The methodology for this work is given in chapter
3, describing how the algorithm for ground detection and image inpainting algorithm, as well as
how the selection of subsets of the point cloud was implemented. An evaluation of this study
follows in chapter 4, where the efficiency of the implementation in terms of runtime and visi-
ble results is shown. The final chapter offers an outlook on what could be improved and what
features could be implemented in the future.
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CHAPTER 2
Related Work

2.1 Point Clouds

Point clouds are a set of unconnected points in 3D space. Those points consist of x, y, and z
coordinates and r, g, and b color values. They can represent 3D objects and can be created with
depth sensors or Light Detection and Ranging (LIDAR) sensors. [6]

2.2 Open3D

Open3D is an open-source library that focuses on processing 3D data. The initial goal was
to create an easy-to-use, open-source software framework that supports rapid development for
three-dimensional data, as there was no such framework. [18] The library contains many useful
functions which we used in this thesis, for example:

The inbuilt point cloud data structure had several functions, such as voxel_down_sample(),
which downsamples a point cloud and averages their normals and colors, segment_plane(),
which uses a RANSAC implementation to segment a plane in the point cloud, select_by_index()
to select a part of the point cloud using the indices of points as input parameters or even
paint_uniform_color() to change the color of the point cloud. [2]

Open3D’s geometry was also very beneficial. For example, we used BoundingBoxes, which con-
tains a get_point_indices_within_bouding_box() method, which returns all point indices within
the bounding box. [1]

There are also transformation functions such as rotate(), scale() and translate() available for
all 3D data models.
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The graphical user interface, setting up a scene, and rendering the data models was also im-
plemented with Open3D’s visualization functions. [3]

2.3 RANSAC

The Random Sample Consensus (RANSAC) algorithm can handle and interpret data models
with a significant ratio of gross errors. In point cloud data, we have a vast number of outliers
if we, for example, consider all points except ground points as outliers. Therefore we can use
the RANSAC algorithm to detect planes in point cloud data, which we can further specify to
recognize ground planes only to place all objects onto it. In general, the RANSAC paradigm
works as follows:

If a set of data points P to a specific model M is to be set, which could be a plane, n ran-
dom points (n is the minimum number of points required to instantiate the model. For a plane,
three points would be needed) have to be selected from the set of points P . After that, a subset
S containing all points within a certain error tolerance to the model M is determined. If S is
greater than a specific threshold t, the subset S will be used to compute a new model M1, which
will be the result. If S is less than t, a new subset, S2, will randomly be selected. This process is
repeated for a certain number of iterations. If no consensus is found after all iterations are com-
pleted, the algorithm either terminates in failure or chooses the model with the largest consensus
set S. [11]

2.4 Image Inpainting

Image inpainting is used to fill in damaged parts or missing data in an image or video using the
surrounding pixels. The goal is to retouch photos with various types of defects, such as scratches
or dust particles on the camera when the picture is taken. However, it can also remove particular
objects from an image and then use the environment to reconstruct a complete image. Therefore,
an attempt is made to fill in the damaged areas and put them together with the original image
so that the average viewer cannot see that the image has been inpainted. Initially, this work was
conducted by professional artists, but now there are several techniques to automate this work
with an algorithm. [4]

The OpenCV library provides two different algorithms for inpainting images. One is the
cv.INPAINT_TELEA algorithm, which is based on the paper „An Image Inpainting Technique
Based on the Fast Marching Method“ [14], and the cv.INPAINT_NS algorithm based on the
paper „Navier Strokes, Fluid Dynamics, and Image and Video Inpainting“ [4]. The decision
on which algorithm to use was made after researching which would be better suited for our ap-
plication. A paper was found comparing both algorithms in several tests, and as it turned out,
they are very similar in terms of efficiency. To be precise, the differences are so small that it
hardly makes a difference in which algorithm is chosen. The paper concludes that the TELEA
algorithm is slightly more efficient. However, the comparison involved a test with random text
as the error mask. This random text was generated and placed on the image as error regions.
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The result was that the NS algorithm performed slightly better than the TELEA algorithm, and
since the error masks in our work are also spread very widely and randomly over the image, just
like the random text, the decision was made to use the NS algorithm. Although, as mentioned
earlier, it would not make much difference if the TELEA algorithm would be used. [7]

2.5 Point Cloud Inpainting

We wanted to use the Image Inpainting algorithm to fill missing parts of flat regions in point
clouds. A way to approach this is to directly fill the missing parts of the selected object, mean-
ing that the missing points are created and added at the correct position. Point cloud completion
algorithms can be used to complete specific point cloud objects as in [17] and [16]. For exam-
ple, these algorithms use a point encoder GAN or a neural network such as PMP-Net++, which
is used to complete all types of point cloud objects such as cars, airplanes, chairs, tables, or poles.

in the first paper [17], point cloud data is used directly as input without labeling the data. They
can train their network very fast and it has a high generalization capability which can be used to
create new point clouds and enlarge 3D point cloud data sets. In general, the results were very
good although the local feature learning ability needs to be improved as some regions remained
incomplete.

The second paper [16] completes their point cloud objects by moving points from the source
to the target in multiple steps. The neural network PMP-Net++ learns to predict the complete
shape of the incomplete 3D point cloud object. Compared to other point cloud completion algo-
rithms, PMP-Net++ is superior in terms of quality and performance.

However, both of these studies [17] and [16] do not specifically address the efficiency of fill-
ing gaps on the ground or sidewalks, and the completion of specific objects is beyond the scope
of this work.

There are also several other approaches as in [8] or the improved work [9] and [12] to fill holes
in three-dimensional point cloud geometries. In [8], the first step is to determine where the hole
is located. Then, points surrounding the detected hole and certain surface points are prioritized
to determine when they will be processed. The filling is done iteratively by selecting the best
template near the hole from which points are transferred to the hole. In particular, with the im-
provements from the following work [9], high quality results can be obtained. However, this
work does not take into account the colors of the point clouds and again focuses more on indi-
vidual objects rather than a street scene where multiple objects in the vicinity would need to be
considered.

Another work [12] deals with dynamic point cloud inpainting via spatial-temporal graph learn-
ing. Here, it was attempted to fill holes in 3D point clouds in motion. The results are very
promising, although for this work we need a static algorithm for inpainting point clouds instead
of a dynamic algorithm.
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2.6 Similar Projects

There are already several papers dealing with similar topics which will be discussed in the fol-
lowing. The first paper had the goal of processing street scenes by removing people, cars, or
other objects and also adding them back, just as in our thesis. One difference was that they
also calculated the sun direction to cast realistic shadows, but the most significant difference is
that it only works on images. Our work will be able to remove, move and add those objects
in a three-dimensional space, with extra features such as automatic classification of objects and
image inpainting missing holes on the ground. [15]

Another work also deals with the selection and editing of large point clouds. Their goal was to
develop an out-of-core editing system to interactively select and segment, delete or render spe-
cific parts of the point cloud and also insert new points. They also heuristically estimated point
sizes to mimic closed surfaces when a point cloud had large discrepancies in density. However,
the focus of this work was on using memory as efficiently as possible and achieving high per-
formance and good rendering quality, so moving objects or inserting new objects into the scene,
as well as automatically detecting objects with a classification algorithm and filling gaps in flat
regions created when, for example, certain objects are deleted were not implemented. [13]
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CHAPTER 3
Methodology

This thesis aims to write software that allows editing point clouds with the following specific
operations.

The most crucial operation would be the selection of objects that are part of the point cloud.
Furthermore, deleting, saving, or moving those selected objects and adding new objects to the
scene should be possible. Also, filling gaps in ground regions such as the floor or a sidewalk will
be implemented. Additionally, the software should be able to classify everyday objects found on
streets, such as trees, cars, buildings, etc., to select these objects conveniently. This classifica-
tion, however, is not explained in this thesis since my colleague Ahmed El Agrod describes this
process in more detail in his work [10].

3.1 Ground Plane Detection with RANSAC

It is to be assumed that all our newly added objects are going to be placed on the ground.
Therefore, an algorithm that recognizes a ground plane to implement the adding operation was
required. So if a new point cloud, for example, a tree, is placed on a street, it would not be
desirable for the tree to sink into the ground or float in the air. Thus, using the RANSAC
algorithm [11], when a user wants to add the tree, it should be automatically placed at the correct
height.

RANSAC

The RANSAC algorithm is beneficial for detecting the ground plane of a point cloud. Because
capturing certain scenes with LIDAR sensors, a significant number of points are recorded on the
ground.

The following section is a brief explanation of the RANSAC algorithm from Open3D’s library
that is used in this work:
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The algorithm takes x points as input. From these points, it randomly selects a subset of 3
points and creates a plane with these points. Next, it is checked how many of those x points
are exactly on that plane or within a specific threshold t. These points are called inliers. After
that, it saves the plane and all inliers. The algorithm does this for i iterations, starting over again
by selecting three more random points. If the number of inliers in this iteration is higher than
the previously saved result, the result is updated and set to the current plane and inliers. After i
iterations are completed, a suitable plane that contains as many points as possible is obtained.

Plain RANSAC implementation

The RANSAC algorithm was straightforward to utilize as Open3D’s library [18] had already
implemented it. The method is called with a point cloud and had the following three parameters:
threshold t, number of randomly selected points n (which is 3 in our case since we want to create
a plane), and iterations i, which have been briefly explained in 3.1.

Walls detected

A problem with using Open3D’s RANSAC method was that it is not limited to only recognizing
ground surfaces. As already described, the RANSAC algorithm returns a plane and all inliers,
where the amount of inliers is maximized. Therefore, the RANSAC algorithm could detect
walls instead of ground surfaces if a vertical plane contains more points than a horizontal plane,
as seen in Figure 3.1.

Figure 3.1: Point cloud where the wall was detected. Points marked red = inliers.
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To solve the problem, the angle between the plane’s normal vector n⃗ and the up vector

z⃗ =

 0
0
1


is calculated as follows:

cosα =
n⃗× z⃗

|n⃗|

If this calculated angle α is greater than 45 degrees (45 degrees has been found to work well),
our RANSAC method is executed recursively, but this time with a point cloud that does not con-
tain the inliers of the previous step. That means the new point cloud after each recursion step s
is P i+1 = P i − Ii, where I = inlier set.

With this implementation, only ground surfaces are detected, or to be more precise, surfaces
with a maximum gradient of 45 degrees to the ground. The results are illustrated in Figure 3.2.

Figure 3.2: Point cloud where the floor was successfully detected. Points marked red = inliers.
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Implementation

Several ideas and steps were attempted during this project to use the RANSAC algorithm effi-
ciently and effectively. Various approaches that were implemented during the project and the
final implementation are described in this section.

To improve usability, when adding new objects, it was decided to implement a preview that
follows the mouse in real-time and shows where the object will be placed. Furthermore, since
newly added objects are always placed on the ground, the preview must also move along the
ground.

The first approach was to calculate the ground points locally in a sufficiently large area (for
the RANSAC algorithm to work correctly) each time the mouse moves to a new position. Then
the ground point closest to the mouse position was automatically selected to place the preview.
However, the calculation of Open3D’s RANSAC implementation took about two seconds. Thus
it was not practical because the workflow would be severely restricted if users had to wait 2
seconds after each mouse movement.

So to solve this problem, it was decided that all ground points before adding new objects into
the scene, should be calculated. To achieve this, the RANSAC algorithm is applied to the entire
point cloud as soon as it is loaded into the scene. However, there is a downside to this as the
RANSAC algorithm calculates a plane, but the ground of this point cloud may be somewhat
curved. These gradients occur, for example, when a street is loaded into the scene since streets
are not always flat, and their slope can vary. This curvature causes the RANSAC algorithm to
not detect ground points in certain areas. Figures 3.3 and 3.4 show an example where the point
cloud ground was not fully recognized. The points marked in red represent the inliers, and the
grey area interior to the red area should also be marked.
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Figure 3.3: Point cloud where the ground is not fully recognized. Points marked red = inliers,
the grey area interior to the red area should also be marked.

Figure 3.4: Point cloud where the ground is not fully recognized. Points marked red = inliers,
the grey area interior to the red area should also be marked.

To counteract this, it was required to adjust the parameters for the RANSAC algorithm.
More precisely, by increasing the threshold t, which specifies the distance to the plane at which
points are marked as inliers. By doing that, we get all ground points as inliers, as seen in Figure
3.5. However, increasing the threshold results in another problem. In our case, the threshold

11



should be kept as small as possible because undesired outcomes are achieved if the value is set
too high, as shown in Figures 3.6 and 3.7.

As can be seen, the tires and generally the underside of the car are also marked as inliers,

Figure 3.5: Point cloud where the ground is fully detected. Points marked red = inliers.

Figure 3.6: Cars wrongly contain inliers. Points
marked red = inliers.

Figure 3.7: Cars (with clear outlines) wrongly
contain inliers. Points marked red = inliers.

although they should not be part of the floor where the user could place objects. In addition
to these problems, applying the RANSAC algorithm to the entire point cloud significantly in-
creased the loading time. For an 8 million point cloud, there was approximately 17 seconds of
delay before the point cloud loaded. Users would not tolerate such delays, so another solution
had to be devised.
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Eventually, we arrived at the final implementation, which was far more elegant and efficient
than the other approaches. We still apply the RANSAC algorithm as soon as the point cloud is
loaded into the scene, but this time we do not use all points of the point cloud but a subsampled
set.

We get the subsampled set using the voxel_down_sample() method from Opend3D’s library.
This method has a parameter that specifies the size of a voxel. You can imagine that multiple
neighboring voxels are superimposed on the entire point cloud. After that, we check which
points are inside each voxel, and from these points, one average point is calculated. Therefore,
each voxel will calculate precisely one point. This results in a point cloud containing signifi-
cantly fewer points than the original, depending on the chosen voxel size.

With this method, we can significantly reduce the number of points from around 8 million to
50,000 points, improving performance from 17.45 seconds to approximately 0.45 seconds while
still achieving good results. In our implementation, we use a fixed voxel size of 0.35 (this value
worked very well) for every point cloud since all used models for this project are from the same
dataset with approximately equal density.

Furthermore, we are no more calculating the closest ground point to the mouse position to ob-
tain the location where the preview will be placed. Instead, we use the mouse’s world x and y
position and substitute them into the plane equation to get the z value. Therefore, we now have
an x, y, and z value to place the preview. After each newly added object, the RANSAC algorithm
is executed again to update this plane.

It has previously been mentioned that the ground of the point cloud can be curved. This curva-
ture can still occur, meaning the preview is not perfect. It may float above the ground or sink
into it. Therefore, we can no longer place the object in the same position as the preview. To
solve this problem, when the user finally places the object, we apply the RANSAC algorithm
locally, in a small area around the preview position, and substitute the mouse’s x and y position
in the new plane equation just computed, resulting in a more accurate result. This allows for a
preview of the point cloud in real time and accurate placement on the ground.

3.2 Select Subsets of the Point Cloud

We implemented a modifiable box to enable the user to select a specific subsample of points.
This box is of type oriented bounding box from Open3D’s library. The user can transform the
box by rotating, scaling, or translating it, which was implemented with Open3D’s methods ro-
tate(), translate(), and scale(). After the user places the box, we obtain all indices from the
point cloud inside the box with the get_point_indices_within_bounding_box() function from
Open3D’s library. This function takes all point cloud points as its parameter and returns an array
of all point indices inside the box. With these indices, it is possible to call the select_by_index()
function on the original point cloud to obtain a new point cloud consisting only of points inside
the box.
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3.3 Image Inpainting

Since we can delete individual objects from the scene, it is not unlikely that ground points of
the point cloud are also removed, or there may never have been ground points beneath the re-
moved object because the LIDAR sensor could not detect them, resulting in missing parts on
the ground. Also, scanned point clouds are often incomplete and generally contain many holes.
However, we need a ground to place objects correctly. Therefore, the idea arose to apply an
image inpainting algorithm to fill gaps in flat regions in the point clouds. Thus, the point cloud
can be completed and embellished by implementing the image inpainting algorithm.

Image inpainting is mainly used to reconstruct incomplete two-dimensional images with holes
or flaws. This raises the question of how we can use this algorithm on three-dimensional point
clouds so that an image inpainting algorithm is still usable. The following section describes how
we applied the image inpaining algorithm step by step.

Implementation

Here is a brief overview of how the implementation works. First, we need to select an area (with
a gap and enough points to infer the pixels to fill) of the point cloud where we want to execute the
algorithm. After that, the area will be converted to an image where point cloud points represent
pixels. Then, each pixel receives the corresponding color of the point cloud point. If there is no
point of the point cloud on a pixel, the pixel’s color is black. The next step is to use a classic
image inpainting algorithm to inpaint all black pixels. Last but not least, each pixel assigned a
new color value through the image inpainting algorithm must be converted back into a point in
the point cloud and placed correctly.

Step 1: Select an area

We use our modifiable box to select the area where the point cloud is to be inpainted, which is
automatically created and has to be placed somewhere on the ground. After the box is placed,
we obtain the point cloud with all the points inside the box, which was already mentioned and
briefly explained in section 3.2. Subsequently, we downsample that point cloud to enhance
performance, and with those points, we call our RANSAC algorithm to detect all ground points.
This thesis previously mentioned that the algorithm returns inliers, and now we can create a
point cloud with those inliers. Therefore, as seen in an example in Figure 3.8, the point cloud
section is now inside the box, which contains only ground points.
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Figure 3.8: Only ground points are selected (= marked red), which are part of a separate new
point cloud.

Step 2: Rotate the selected area to be axis parallel

Since the user can rotate the modifiable box, which is used to select the area, it is not always axis
parallel. However, for the following steps to be able to map our points to pixels, it is necessary
for the chosen area to be axis parallel. Therefore, we translate all points from the center of the
modifiable box to the origin and afterward take the current rotation matrix of the box. Then, the
inverse of the rotation matrix is calculated and applied to all of our points.

t := points.translate(−modifiable_box.center)

r := points.rotate(inverse(modifiable_box.R))

R = t ∗ r

The entire transformation R is visualized from a top-down perspective in Figure 3.9.
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Figure 3.9: Top-down sketch before and after step 2.

Step 3: Convert points array for image

Now we can take all points and colors of the point cloud, remove the z value of the points and
create an array called points_and_colors which has the form x, y, r, g, and b, where x and y
represent the position and r, g, and b are the colors.

Step 4: Calculate the average distance

To map the points to pixels, we need an average distance d to determine the image_height h and
image_width w of the image we want to generate. The approach is first to calculate the area a
of our modifiable box with

a = modifiable_box_height ∗modifiable_box_width

To obtain the average distance d, we calculate

d =
a

len(points_and_colors)

After that, we compute the image_height h and image_width w of the image with the following
equation:

h = ceil(
modifiable_box_height

d
)

and
w = ceil(

modifiable_box_width
d

)
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If the average distance d is small due to the density of points in the area being very high, we
will get a large image size. This is detrimental to the performance. Therefore, we cap the image
size, not letting it surpass the maximum amount of pixels in the image max_pixel, which was
chosen in this implementation to be 250,000. If

h ∗ w > max_pixel

, we increase the average distance d and calculate h and w again with the same equation. This
is repeated until

h ∗ w ≤ max_pixel

.

Step 5: Map points to pixels

In this step, we map our point cloud points, which have float values for x and y ranging from
[−inf,+inf ], to pixels which are integer values ranging from [0, h|w], where h or w are
the previously calculated image_height/width. We first have to get a local position within the
box. Therefore we subtract the upper left corner position of the modifiable box corner_pos =
(modifiable_box_min_x,modifiable_box_max_y) from all point positions in our points_and_colors
array. After that, we divide the x and y position of the points by the average distance d calculated
in step 4 and truncate the result to obtain an integer pixel position.

t := points_and_colors.position.translate(−corner_pos)

x := points_and_colors.position = ceil(
points_and_colors.position

d
)

M = t ∗ x

After this transformation M is completed, the x and y position of the points_and_colors ar-
ray now represents the pixel position in which it should be placed. Some points may overlap
and have the same pixel position. In this case, we will blend the colors of all points in that pixel
equally to obtain the final pixel color.

Next, we create a new array containing all pixels for the desired image, with dimensions x =
w and y = h, where w and h are the calculated image_width and image_height values from step
4 and dimension z which contains r, g, b as values initially set to 0 which represent the color and
a for the number of points in that pixel. This results in a 3 dimensional array (image_width *
image_height * r,g,b,a). Then we loop through our points_and_colors array. For each entry in
points_and_colors, we do the following:

image[points_and_colors.position].rgb += points_and_colors.color
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image[points_and_colors.position].a += 1

After the loop is finished, we have to correct the color value if more than 1 point was assigned
to a single pixel:

pixel.rgb = pixel.rgb/pixel.a

Now we have an image array that contains all the ground points mapped to pixel values with
associated color values, and in those pixel positions where no points were mapped, the r, g, and
b values are 0, i.e., the color black. Figure 3.10 shows an example of the current image array
data.

Figure 3.10: Point cloud, which visualizes the image array data.

Step 6: Image inpainting

For the image inpainting algorithm, we used a library called OpenCV [5]. This library provides
the function inpaint() that takes two images as input. The first image is the distorted image that
is going to be inpainted. An example of this is given in Figure 3.11. The second image is a mask
where all pixels which will be inpainted from the distorted image are marked in white, as seen
in Figure 3.12. The output of this function is the inpainted image, where all black pixels in the
distorted image should be filled with a new color, observable in Figure 3.13.
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To obtain the distorted image, it was necessary to multiply our color values from the image
array by 255 and round the result to map the values which ranged from floating-point numbers
between 0 and 1 to integers between 0 and 255. This is required because OpenCV uses a color
range of 0-255.

To obtain the mask image, all black pixels of the distorted image were selected, converted into
white pixels, and the rest set into black pixels.

After creating those image arrays, we used the imwrite() function from OpenCV to create .jpg
images. At first glance, creating the .jpg files seems redundant and inefficient, but the imwrite()
function is relatively fast, and it is no longer necessary to convert the image array to use the
inpaint() function of OpenCV to work. Instead, we can directly use the .jpg images as input.
Additionally, the user can use those images as a debug tool to see which areas are being recog-
nized and how they were inpainted by the algorithm.

Figure 3.11: Incomplete image Figure 3.12: Mask image
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Figure 3.13: Inpainted image

Step 7: Map pixels to points

Only black pixels from the distorted image need to be selected as these are the inpainted pixels
that need to be mapped back to points in the point cloud. Otherwise, we would not only create
points where the gap is but everywhere. Therefore, we multiplied the mask image with the in-
painted image to select exactly these inpainted pixels. This results in an array where only the
inpainted pixels remain colored, and everything else is set to 0 and thus black.

Next, we traverse the entire image in the x and y directions and check if the r,g, and b val-
ues are not 0. If they are not, a new point is added to the point cloud. Therefore, we apply the
inverse transformation M−1, which was used in step 5, on the pixel position to return to the
correct world position.

Additionally, we calculate a small random value with random.uniform(−d, d), which gives
an arbitrary value between −d and +d, where d represents the average distance from step 4.
This random value is added to the x and y position to obtain a more natural look for the point
cloud. Otherwise, the added points are placed in a grid-shaped structure. Figures 3.14 and 3.15
show a comparison.

Depending on how often we increase the average distance in step 4, we add more than one
point per pixel with identical color values to obtain a better-looking, denser cloud.
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Figure 3.14: Image inpainting with random value added to x and y coordinates.

Figure 3.15: Image inpainting without random value added to x and y coordinates.

Step 8: Rotate back to the original rotation

Before adding the points to the original point cloud, it is needed to reverse transform and rotate
them using the inverse transformation matrix R−1 mentioned in step 2.

When we apply this matrix, we have each point’s x and y position and the corresponding pixel’s
color value that we can add to the original point cloud.
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Step 9: Add new points to the original point cloud

The last element missing is a z value for the point position. To obtain an appropriate z value, we
use an average z value of all initially selected points

avg_z =
sum(points_and_colors.z)
len(points_and_colors)

and assign this value to each point. The final step is to append the new points to the original
point cloud points and our new colors to the original point cloud colors. Examples and tests of
this implementation are shown in the evaluation section 4.3.

3.4 GUI

One of the goals was to write software that would be user-friendly; therefore, it was essential
to implement a simple user interface. The software should also allow the user to operate the
program as intuitively as possible. Therefore, we kept the GUI as minimalistic as possible and
avoided confusion with too many buttons.

Implementation was straightforward because we could use Open3D’s pre-built menu bar and
callbacks that trigger when a button is pressed.

To avoid an excessive number of buttons, we implemented shortcuts. For example, the user
must use shortcuts to transform the modifiable box. For example, a user wishes to move the
modifiable box. In this case, they can press the key „T“ and drag the mouse. Also, some but-
tons, such as „Remove Selected Object“ and „Move Selected Object“, have additional shortcuts
„D“ and „M“ to achieve a more convenient workflow.

However, how does the user know which shortcuts exist or what a specific button does? We
thought about adding a help tab, where the user can quickly check which keys must be pressed
or which controls must be used to reach their goal. This approach works quite well since the
software does not have too many features, and it is feasible to describe everything in a dialog
box, as seen in Figure 3.16.

With „Open“, a new point cloud can be added to the scene. It is assumed that the lowest
point of each point cloud is always the point that should touch the ground since we presuppose
that there are no outliers. Therefore, the first point cloud added is placed at the origin of the
scene and shifted in the z-direction by the negative value of the smallest z-value in the point
cloud. After this shift, the smallest z-value is therefore 0. Next, our RANSAC algorithm is ex-
ecuted to determine the ground surface as described in section 3.1, which is required for adding
new objects.

If the „Open“ button is clicked, and there is already a point cloud in the scene. The only dif-
ference is that users now see a subsampled preview of the point cloud they want to add and
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Figure 3.16: GUI of help tab on the left image and dialog box on the right image.

can choose where to place it. This preview is also placed on the ground with the smallest z
value of the point cloud determined by the previous RANSAC calculation of the ground surface.
After the user has decided to place the point cloud, the RANSAC algorithm is automatically
executed again locally, as explained in 3.1, to position the point cloud ideally on the ground.
Subsequently, the RANSAC algorithm is repeated to update the ground surface.

What is the difference between „Save“ and „Save selected“, seen in Figure 3.17? The „Save“
button is enabled as soon as the first point cloud is loaded into the scene and allows the user
to save the entire point cloud. On the other hand, the „Save selected“ button is only enabled as
soon as a specific part of the point cloud is selected. Selecting parts of the point cloud is possible
with the tools „Select“ or „Select Object“. Then, for example, the selected area, which can be a
tree or a car, can be saved separately.

Figure 3.17: GUI of File tab where „Save“ and „Save selected“ are highlighted with a red box.
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As can be seen in Figure 3.18, „Remove Selected Object“ and „Move Selected Object“ is
also initially disabled. They can be enabled similarly to „Save Selected“ by selecting a particular
part of the point cloud. If the user clicks on „Remove Selected Object“ or presses „D“, the se-
lected part is deleted from the scene. If the user clicks on the „Move Selected Object“ button or
presses „M“, the selected points can be moved, and we see a subsampled preview of the points
following the user’s mouse.

Figure 3.18: GUI of File tab where „Remove Selected Object“ and „Move Selected Object“ are
highlighted with a red box.

When clicking „Select“, a modifiable box is created, and corresponding points within are se-
lected as described in section 3.2. As seen in Figure 3.19, the selected points are also marked
green for better visibility.

Figure 3.19: Selected points are marked in green.
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If the user clicks on the „Image Inpainting“ button in the Tools tab, seen in Figure 3.20, the
image inpainting algorithm will be executed as described in section 3.3. First, a modifiable box
is automatically created, which the user can place as desired with a left click. Once the desired
area is selected, the user must press „I“ to execute all further steps.

Figure 3.20: GUI of Tools tab where „Image Inpainting“ is highlighted with a red box.

Other tools, including filtering by classification, setting classification and selecting objects are
described in Ahmed El Agrod’s work. [10]
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CHAPTER 4
Evaluation

The evaluation was conducted using test data from the City of Vienna.

4.1 Software and Hardware Specification

My colleague Ahmed El Agrod and I used Python 3.9 for the project and developed it in the IDE
PyCharm. We both used a Windows 10 operating system. However, the program was also tested
on Linux Ubuntu 22.04.

The following components were used for the evaluation:

• GPU: NVIDIA GeForce GTX 980

• CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz, 4008 MHz, 4 Cores, 8 Threads

• RAM: 16.0 GB

• OS: Microsoft Windows 10 Home, 64-bit operating system x64-based processor

4.2 Adding Objects to the Ground

In this section, the efficiency of adding new objects is evaluated. We will measure execution
time with different point cloud sizes to show how the implementation performs. We will also
visually illustrate the distance between the ground and the added object.

Performance

To better understand how specific steps affect the performance, we have divided the adding pro-
cess into three phases.
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The first phase is the time required to translate the point cloud to the desired location and the lo-
cally executed RANSAC algorithm to more accurately place the point cloud on the ground. The
second phase is, rendering the new point cloud and the last phase is computing the new plane
by running the RANSAC algorithm on the entire downsampled point cloud. In the following
graphs, these steps are referred to as „Local ransac“, „Rendering“, and „Update plane ransac“.

The first measurements were used to investigate the time needed to add a point cloud to the
scene. Increasingly larger point clouds were added to determine if there was a correlation be-
tween the runtime and the size of the point cloud. The measurements are shown in Figure 4.1.

The results show that the runtime increases as the number of points in a point cloud increases.

Figure 4.1: The time it takes to add a point cloud to an empty scene. Adding a larger point
cloud increases the runtime—approximately linear growth.

It appears that a linear relationship exists between the runtime and the size of the added point
cloud. It should be noted that all point clouds were added to an identical initial scene.

The second measurement was used to determine whether the same point cloud takes the same
amount of time when added to the same scene multiple times.

In Figure 4.2, you can see the results of the time it takes if we add a point cloud of identi-
cal size multiple times to the same scene. In these measurements, we used a point cloud with
around 400,000 points, and you can see the more often we add the point cloud, the more points
there are in the scene, and the longer it takes to add the point cloud.
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It could be assumed, based on the information in Figure 4.1, that the performance only de-

Figure 4.2: The time it takes to add a point cloud multiple times to the same scene. Linear
growth is visible but dependent on Rendering and Update plane RANSAC.

pends on the size of the point cloud. However, the performance is heavily dependent on how
many total points are in the scene since the execution time of the „Rendering“ and „Update plane
ransac“ steps increase as the total number of points in the scene increase.

Here is a brief explanation of the reason for such runtimes:

• The duration of „Local ransac“ depends heavily on where the user clicks and adds the
object because if there are many points in that area, the calculation takes longer than if
there are fewer points. For this reason, there are peaks in the graph for the „Local ransac“
line.

• The „Update plane ransac“ shows a constantly increasing computation time, which is log-
ical because if more points are in the scene, the RANSAC requires more time to calculate
the new plane.

• The „Rendering“ step also takes more time as more points are in the scene as expected.

Best Case

In the following Figures 4.3, 4.4, 4.5, and 4.6, two highly successful examples of adding objects
are illustrated. There is no visible gap between the ground and the objects. You can see that
the object is placed on the ground. This functioned well because the RANSAC algorithm could
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recognize the ground, and the object to be added had no outlier points. Every object shown in
the following images was newly added at this location.

Figure 4.3 shows the addition of a vehicle to a scene, with the added vehicle visible in the
right-hand image. Figure 4.4 shows the same example from another perspective to better visual-
ize that the vehicle was perfectly placed on the ground. The red lines make it easier to recognize
the car standing on the ground. Adding this point cloud took about 0.754 seconds; the vehicle
has 19,644 points and the scene has 8,074,211 points.

Figure 4.3: The addition of a vehicle to a scene.

Figure 4.4: Another perspective of the vehicle added to the scene. The red lines make it easier
to recognize the vehicle standing on the ground.
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Figure 4.5 shows the addition of a pole to a scene, with the added pole visible in the right-
hand image. Figure 4.6 also shows the pole from another perspective to make it more recogniz-
able that it was perfectly placed on the ground. The red circle makes it easier to recognize the
pole standing on the ground. Adding that point cloud took about 0.736 seconds; the pole has
33,922 points and the scene has 8,088,489 points.

Figure 4.5: The addition of a pole to a scene.

Figure 4.6: Another perspective of the pole added to the scene. The red circle is intended to
make recognizing the pole standing on the ground easier.
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Worst Case/Limitations

To achieve desired results, the point clouds must fulfill a requirement, as in the previous section
4.2. When adding new objects, there must be no or as few outlier points as possible. More
specifically, these are outliers below the lowest point of the point cloud. This is important as
the point clouds are placed at the lowest point on the ground. That means unwanted results will
occur if the lowest point is an outlier, as shown in the following example. We wanted to add a
wall that contained outliers below the actual lowermost point of the wall. This point cloud can
be seen in Figure 4.7, where outliers are highlighted with a red circle.

Figure 4.8 shows the results of the adding process. The right-hand image shows a wall added

Figure 4.7: Wall with outliers below the lowest point of the wall. Outliers are highlighted with
a red circle.

to the scene, which is above the ground. As always, the lowest point of the point cloud is placed
on the ground, but in this case, the lowest point is an outlier, which causes the undesired result.
In Figure 4.9, the outliers are highlighted with a red circle for better visibility.
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Figure 4.8: The addition of a wall to a scene (right image). The wall is not on the ground as
would be desired.

Figure 4.9: Outlier points of the wall are highlighted with a red circle.

Another known limitation of this project is that it is not possible to deliberately add objects
above the ground. For example, as seen in Figure 4.10, the user wanted to add a traffic light, but
they could only place it on the ground. Figure 4.11 shows how the user would like to position
the traffic light.
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Figure 4.10: Shows that the traffic light is automatically placed on the ground.

Figure 4.11: This image shows how the traffic light should be placed.
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4.3 Image Inpainting

To evaluate the image inpainting implementation, we first examine how the performance changes
as the selected area becomes larger. We also compare areas with different percentages of holes
in the designated area for the same spot in terms of image quality and runtime. Finally, the
overall quality is represented by erasing ground truth sections and then inpainting that section
with the image inpainting implementation. Consequently, the degree to which the ground truth
differs from the image inpainted region can be evaluated.

Performance and visual quality

The following measurements include the whole image inpainting process as described in 3.3. In
Figure 4.12, we can see the measurements of the image inpainting as the area to inpaint becomes
more extensive, and therefore, the points inside the selected area increase. It can be seen from
the figure that the larger the area chosen, the longer the runtime.

In our tests, we found that, when selecting an area, the points do not exceed 100,000 points in

Figure 4.12: Performance of the image inpainting algorithm. The higher the point cloud size,
the longer the runtime.

most cases, so the runtime is less than one second. Figure 4.13 shows an example of an area
consisting of approximately 100,000 points, highlighting the area size which would have to be
chosen. This box size is, in most cases, already much too large to fill individual separate holes.
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Figure 4.13: Image inpainting on a selected area of approximately 100,000 points.

Next, the performance when choosing different percentages of the hole in the selected area
will be considered. All measurements in Figure 4.14 were obtained from the same point cloud,
which consisted of approximately 400,000 points, to ensure that the point cloud size was not
affecting the measurements.

Performance-wise, as seen in Figure 4.14, the percentage of the hole has little to no effect
on the algorithm’s runtime. As the size of the hole (relative to the selected area) increases, the
performance remains relatively the same or even has a slight downward trend. This downtrend
can be explained as follows.

If the proportion of the hole increases, the calculated average distance becomes higher. Thus,
the number of pixels in the created image is smaller, leading to a shorter runtime and fewer
points that are inpainted. This leads to poor visual results because the average distance is almost
certainly falsified, and as mentioned, fewer points than expected are added. So, ultimately, the
hole is filled but not with as many points as it should be.

This effect can be seen in the following Figures. For the next two examples shown in Figure
4.15, we cut out a hole of the same size. In Figure 4.16, you can see the result of the image
inpainted point cloud if the percentage of the hole is very high. It can be seen that the density
of points in that area is lower than in the surrounding area. Also, the modifiable box (white
square) is visible and shows how small the selected area was. In Figure 4.17, it can be seen that
the density of points is close to the density of the surrounding area. We achieved this result by
selecting a much larger area with the modifiable box and therefore reducing the hole percentage,
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Figure 4.14: Performance of the image inpainting algorithm with varying percentages of the
hole. With a point cloud of approximately 400,000 points.

as seen in Figure 4.18.

Figure 4.15: The cut-out hole.

Figure 4.16: Image inpainted point cloud where
the percentage of the hole was very high. Also,
the modifiable box (white square) is visible and
shows how small the selected area was.
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Figure 4.17: Image inpainted point cloud with
a lower percentage of the hole.

Figure 4.18: Image where the size of the modi-
fiable box (white square) is much bigger, which
leads to better image inpainting results as seen
in Figure 4.17.

Best Case

Figures 4.19 and 4.21 show a point cloud with incomplete ground parts due to the LIDAR sensor
not detecting them. With our image inpainting algorithm, we can fill those holes and achieve the
following results, as seen in Figures 4.20 and 4.22. On close inspection, it can be seen that there
was a hole, but overall the appearance has been improved, and the gap is patched. To achieve
a good result, it is necessary that the selected area surrounds the entire hole and, as already de-
scribed, the percentage of the gap must be small enough.

Figure 4.19: Point cloud with missing ground
parts. Figure 4.20: Image inpainted point cloud.

Furthermore, parts of the street were deleted and refilled with the image inpainting algorithm
to compare the ground truth section with the image inpainted one. Two examples were made,
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Figure 4.21: Point cloud with missing ground
parts. Figure 4.22: Image inpainted point cloud.

and the results are given in Figures 4.23 and 4.24. The picture with the cut-out hole is on the
left side, the image inpainted point cloud can be seen in the middle, and the ground truth can be
seen on the right side. As we can see, similar to Figures 4.20 and 4.22, it is still apparent that
there was previously a hole that has been inpainted. The ground truth is visually superior to our
implementation, even tough the gap has been filled with a convincing color and sufficient points.

Figure 4.23: Point cloud that has been image inpainted. On the right side, the ground truth is
visible.
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Figure 4.24: Point cloud that has been image inpainted. On the right side, the ground truth is
visible.

Worst Case/Limitations

When trying to inpaint areas where the hole is extensive and at the edge of the selected area, the
inpainting algorithm does not calculate the color for all pixels that should be inpainted. Thus
some pixels remain still black. This effect is illustrated in the following two examples. You
can see the distorted image on the left side of Figures 4.25 and 4.27, while on the right side of
the respective Figures, the inpainted image is visible. Figures 4.26 and 4.28 show the result of
the image inpainting on the point cloud. The red circle highlights the incorrectly colored black
points.

Figure 4.25: Left: incomplete image. Right: inpainted image.
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Figure 4.26: The inpainted point cloud. The red circle highlights black points.

Figure 4.27: Left: incomplete image. Right: inpainted image.
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Figure 4.28: The inpainted point cloud. The red circle highlights black points.
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CHAPTER 5
Future Work

5.1 Placing Objects

In our current implementation, it is impossible to deliberately place objects not on the detected
ground. So, for example, if a user wishes to position a traffic light in the air, as shown in 4.10,
the traffic light would snap to the ground.

To solve this issue, we could implement a feature where the user can manually move the ob-
ject vertically after placing it on the ground.

5.2 Lighting and Shadows

Lighting and shadows have not yet been dealt with in this work. Currently, we have no light
source or shadows projected onto the point clouds in our scene. Also, the colors of the point
cloud points are not adjusted. We have deliberately omitted these features as too many aspects
needed to be addressed to achieve good results and would therefore be beyond the scope of
this work. Since the software can add new objects to different point clouds, we would have to
adjust the colors of each point cloud accordingly. For example, if a tree were to be inserted from
another scene where the lighting conditions are vastly different, we would have to change the
color of every point in that tree to some degree so that it still looks realistic without the tree
standing out conspicuously. Even if the tree is in the same scene but moved to another position,
it is possible that it was initially captured in sunlight and now could theoretically be placed in a
shady place. The tree would be much brighter as if still illuminated by sunlight, and everything
around it would be darker because it is actually in shadow.
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5.3 Multiple Ground Detection

Another limitation is the preview, which is shown before the user places an object on the ground.
The preview of where the point cloud will be added is not always placed on the ground. This is
because our preview uses only one plane representing the scene’s entire ground. As soon as we
have hilly terrain or, for example, already have a road where one section is straight and another
section has a slope, the ground detection can no longer display the preview correctly because it
would need at least two planes to detect the straight and sloped sections.

It should be noted, however, that this does not affect the point cloud that is finally added since
the RANSAC algorithm is executed locally as soon as the user clicks to place the point cloud.
Thus, the point cloud is placed on the ground as usual.

In future work, we could split our initial point cloud scene into several sections and calculate a
plane for each. As soon as an object is added or moved, the correct plane must be selected for
the respective x and y positions. After the correct plane has been chosen, the x and y position of
the mouse can be substituted into the specific plane equation, as usual, to obtain the z coordinate
for our preview.

5.4 User Feedback

Currently, our software does not offer much feedback for users if specific actions such as Image
Inpainting are triggered. For example, the image inpainting algorithm is sometimes aborted be-
cause too few points are selected. Instead of just printing text to the console, we could inform
the user with a label that shows an error message and automatically suggest an enlarged area
with enough points to execute the algorithm correctly.

It would also be possible to add labels to the scene that pop up when other actions are performed
that are not immediately apparent to the user to give better feedback. Another improvement
would be a bar at the bottom where there are labels that always show which shortcuts or actions
are possible with the current tool selection.
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